Percentages Loans and Saving

Percentages

- Percent is the number per 100
-To convert a decimal to a percent, move the decimal point two digits to the right
-To convert a percent to a decimal, move the decimal point two digits to the left

Examples \% to Decimal

$$
\begin{gathered}
3.7 \% \rightarrow 0.037 \\
125.8 \% \rightarrow 1.258 \\
19 \% \rightarrow 0.19 \\
1.2 \% \rightarrow 0.012
\end{gathered}
$$

> Examples: Decimal to \% $0.48 \rightarrow 48 \%$ $0.031 \rightarrow 3.1 \%$ $2.173 \rightarrow 217.3 \%$ $0.000098 \rightarrow 0.0098 \%$

More On Percents

- General formula: 100*A/B=\%
$>$ What percent of 4 is 3 ? $100 * 3 / 4=75 \%$
$>$ What percent of 6 is 1 ? $100 * 1 / 6 \sim 16.667 \%$
$>$ What percent of 7 is 1 ? $100 * 1 / 7 \sim 14.286 \%$
- Pitfalls of Percentages
$>$ Know what the numerator is
\rightarrow Know what the denominator is

Calculating with Percentages

-Convert the percentage to a decimal
-Perform whatever calculation is
needed in decimal arithmetic

Simple Interest

- Define P as the total amount of money, either in savings or borrowed
- Define r as the rate of interest per unit of time. Generally that unit is a month, or a year. Convert r into a decimal fraction.
- Define n as the number of units of time that have passed
- The amount of interest on P dollars at interest rate r held for n units of time is $\mathrm{P}^{*} \mathrm{r}^{*} n$
- $\$ 1000$ held for 16 months at 0.4% interest per month yields $\$ 64$
- $\$ 5000$ held for 15 years at 5\% interest per year yields \$3750

Compound Interest

- Define P, r and n as with simple interest
- Define A as the total amount at the end of $n^{\text {th }}$ unit of time
- $A=P^{*}(1+r)^{n}$
- $\$ 5000$ at 5% per year, compounded monthly, held for 15 years
- $P=5000, r=0.05 / 12 \sim 0.0041667, n=12 * 15=180$
- $A=\$ 5000^{*}(1.0041667)^{180}=\$ 10,568.52$ (rounded off to the nearest penny)
- $\$ 50,000$ at 4.8% per year, compounded monthly, held for 25 years
$>P=50,000 ; r=0.048 / 12=0.004 ; n=12 * 25=300$
$>A=\$ 50,000 *(1.004)^{300}=\$ 165,608.97$

Loans and Saving

- Set $P=$ the payment
- Set $A=$ the amount in question - Set $n=$ number of units of time - Set r = interest per unit of time

Loans and Savings

$$
\begin{aligned}
& \text { Formula for payment } \\
& \left.P=A^{*} r /\left((1+r)^{n}-1\right)^{*}(1+r)\right)
\end{aligned}
$$

Saving and Interest

- Say you need to have $\$ 8,000$ in 7 years and you can get 4.8% interest per year, compounded monthly.

$$
\begin{aligned}
>A & =8000 \\
>r & =0.048 / 12=0.004 \\
>n & =7 * 12=84 \\
>P & \left.=A * r /\left((1+r)^{n}-1\right)^{*}(1+r)\right)=\$ 8000 * 0.004 /\left(\left(1.004^{84}-1\right)(1.004)\right) \\
& =8000 * 0.004 /\left(\left(1.004^{84}-1\right) *(1.004)\right)=32 /(1.39840148331-1(* 1.004) \sim 80
\end{aligned}
$$

- Assume the interest rate is actually 3.6% compounded monthly
$>r=0.036 / 12=0.003$
>A~\$83.63

Loans and Saving

You need to borrow A dollars, paying it in monthly installments, at interest rate r per unit time, paid over n payments. What will the payment be?

$$
P=A^{*} r /\left(1-(1+r)^{-n}\right)
$$

You can afford a payment of P dollars a month. The interest rate is r per unit time, and you plan to pay this over n units. What can you afford to borrow?

$$
A=P^{*}\left(1-(1+r)^{-n}\right) / r
$$

Payment on a Loan

- Borrowing $\$ 95,000$ at 6% per annum, compounded monthly, paying back over 20 years
$>A=\$ 95000$
$>r=0.06 / 12=0.005$
$>n=20 * 12=240$ months
$>P=95000 * 0.005 /\left(\left(1-(1.005)^{-240}\right) \sim \$ 680.61\right.$
$>$ Total of payments: $\$ 163,336.40$
- The same scenario, but at 5.4% interest
$>r=0.054 / 12=0.0045$
$>P=95000 * 0.0045 /\left(\left(1-(1.0045)^{-240}\right) \sim \$ 648.14\right.$
$>$ Total of 240 payments: $\$ 155,553.60$

What Can I Afford to Borrow?

- You can afford a payment of $\$ 700$ a month, at 6% interest

$$
\begin{aligned}
& >P=700 \\
& >r=0.06 / 12=0.005 \\
& >n=12 * 20=240 \\
& >A=700 *\left(1-(1.005)^{-240}\right) / 0.005=\$ 97,706.54
\end{aligned}
$$

- You find an interest rate of 5.4%
$>r=0.054 / 12=0.0045$
$>A=700 *\left(1-(1.0045)^{-240}\right) / 0.0045=\$ 102,601.40$

