
Increasing software security through open source

or closed source development?

Empirics suggest that we have asked the wrong question

Guido Schryen

University of Freiburg, Germany

schryen@gmx.net

Eliot Rich

University at Albany, USA

e.rich@albany.edu

Abstract
While many theoretical arguments against or in favor

of open source and closed source software

development have been presented, the empirical basis

for the assessment of arguments and the development

of models is still weak. Addressing this research gap,

this paper presents the first comprehensive empirical

investigation of published vulnerabilities and patches

of 17 widely deployed open source and closed source

software packages, including operating systems,

database systems, web browsers, email clients, and

office systems. The empirical analysis uses

comprehensive vulnerability data contained in the

NIST National Vulnerability Database and a newly

compiled data set of vulnerability patches. The results

suggest that it is not the particular software

development style that determines the severity of

vulnerabilities and vendors’ patching behavior, but

rather the specific application type and the policy of

the particular development community, respectively.

1. Introduction

During the past few decades we have got used to

acquiring software by procuring licenses for a

proprietary, or binary-only, immaterial object. We have

come to regard software as a good we have to pay for

just as we would pay for material objects. However, in

more recent years, this widely cultivated habit has

begun to be accompanied by a software model, which

is characterized by software that comes with a

compilable source code. This source code is often free

of charge and may be even modified or redistributed.

The software type is referred to by the term “open

source software” (OSS).

The application fields of OSS are manifold. Internet

programs, such as the mail transfer agent Sendmail, the

Web server Apache, the operating system Linux, the

database system MySQL, and the office package

OpenOffice are some of the most popular examples.

Beyond these application types, we also find computer

games (http://osswin.sourceforge.net/games.html) and

even business applications, such as AvErp, which is a

German stock inventory system for small- and

medium-sized businesses (http://www.synerpy.de/), or

an Enterprise Resource Planning (ERP) system that is

being built by a group of U.S. universities and that is

being overseen by the Kuali Foundation

(http://kuali.org/). OSS has even become part of the

core infrastructure of sophisticated technology

companies, such as Amazon, Google, and Yahoo [1].

Obviously, OSS has arrived in the world of important

and critical information systems that need security

protection against attacks. Its increasing availability

and deployment makes it appealing for hackers and

others who are interested in exploiting software

vulnerabilities, which become even more dangerous

when software is not applied in a closed context, but

interconnected with other systems and the Internet.

While there is consensus about the fact that opening

source code to the public increases the potential

number of reviewers, its impact on finding security

flaws is controversially debated. Proponents of OSS

stress the strength of the resulting review process [2]

and argue in the sense of Raymond [3] that, “Given

enough eyeballs, all bugs are shallow.” (p. 19), while

some opponents follow the argument of Levy [4], who

remarks “Sure, the source code is available. But is

anyone reading it?” Viega [5] further doubts the

superior effectiveness of the open source community

and argues that (1) most code reviewers do not

explicitly look for vulnerabilities and (2) those who do,

are mostly interested in finding those vulnerabilities

that are easy to detect and that bring them high

reputation.

While the security discussion is pervaded with

“beliefs and guesses”, only few quantitative models

and some empirical studies [6-16] appear in the

literature. Most of these empirical studies investigate

one package or few software packages only, and to the

best knowledge of the author no prior study has been

conducted to comprehensively study differences

between open source and closed source software

security. The reason why comprehensive empirical

studies have been neglected is probably due to

https://www.researchgate.net/publication/228738947_B_Large-scale_vulnerability_analysis?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221609812_Predicting_Vulnerable_Software_Components?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/247923775_The_Likelihood_of_Vulnerability_Rediscovery_and_the_Social_Utility_of_Vulnerability_Hunting?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3437666_Is_finding_security_holes_a_good_idea?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220356474_On_the_Security_of_Open_Source_Software?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/252386569_A_Trend_Analysis_of_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220891308_Security_of_Open_Source_and_Closed_Source_Software_An_Empirical_Comparison_of_Published_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220615003_Measuring_analyzing_and_predicting_security_vulnerabilities_in_software_systems?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/227601039_Half_a_Century_of_Public_Software_Institutions_Open_Source_as_a_Solution_to_Hold-Up_Problem?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==

laborious and manual effort required to collectand

analyze the required datadata. However, empirical

research is necessary, as it has the potential to provide

insights in the security of widely deployed information

systems, to support researchers in developing models

for security measurement, and to enrich the security

discussion with the provision of facts.

Interestingly, past empirical studies focus on the

number of vulnerabilities and neglect to consider their

severities and its impact on vendors’ patching

behavior. However, this perspective is important as a

single highly severe vulnerability that enables attackers

to get root access to a system is usually more crucial

than 10 low severe vulnerabilities that only grant

reading access to unauthorized users. Addressing this

lack in research, this study collects comprehensive

empirical data and analyzes open and closed source

software with regard to the severity of published

vulnerabilities and vendors’ behavior in patching these

vulnerabilities. Thereby, it extends earlier studies

[14;15] in two ways: it builds up a new data pool of

patching data, which is not available in publicly

accessible databases, and it uses these data to

investigate vendors’ behavior in terms of which

vulnerabilities have been patched.

The remainder of this paper is organized as follows.

The following section presents the background of open

source and closed source software and provides an

introduction into vulnerabilities and patches. Section 3

explains the research methodology of this study and

the used data, including the investigated software

packages, before Section 4 presents the findings of this

empirical study. Finally, the results are summarized

and conclusions are presented.

2. Background and related work

2.1. Open and closed source software

Generally, the availability of source code to the

public is a precondition for software being denoted as

“open source software”. Beyond this requirement, the

Open Source Initiative (OSI) has defined a set of

criteria that software has to comply with [17]. The

(open source) definition (OSD) includes the permission

to modify the code and to redistribute it. However, it

does not govern the software development process in

terms of who is eligible to modify the original version.

When what is called “bazaar style” by Raymond [3] is

in place, any volunteer can provide source code

submissions. Software development is then often based

on informal communication between the coders [18].

In a more closed environment, software is crafted by

individual wizards and the development process is

characterized by a relatively strong control of design

and implementation. This style is referred to as

“cathedral style” [3]. As the particular development

style might have an impact on the security of software,

a detailed discussion of open source security should

take this into account.

Several OSD-compliant licenses have come into

operation, such as the Apache License, BSD license,

and GNU General Public License (GPL), which is

maintained by the Free Software Foundation (FSF).

The FSF provides a definition of “‘free software’ [as]

a matter of liberty, not price.” [19] In contrast to the

OSD definition, the FSF definition explicitly focuses

on the option of releasing the improvements to the

public, thereby rejecting a strong supervision of the

modification process. More specifically, the definition

says: “If you do publish your changes, you should not

be required to notify anyone in particular, or in any

particular way.” Similar to the discussion of what

open or free software is, we need to define what

“closed software” is: Software is usually regarded as

being “closed”, if the source code is not available to

the public.

The categorization of software and its development

process as “open source software (development)” or

“free software (development)” in contrast to “closed

source software (development)” reflects the

perspective of developers and specifies the type of

development. Complementarily, one could also adopt

the software user’s point of view by distinguishing

between software that needs to be paid for and

software for which no fee applies. The resulting

classification scheme is shown in Table 1.

Table 1. Classification of software [20; p. 2018]

 Open Source

(license)

Closed Source

(source code

 not available)

Free of

charge

Linux, Apache

web server

Adobe Acrobat

Reader

Subject to

charge

MySQL

(dual licensing:

GPL/proprietary

license for

Enterprise

Edition)

Microsoft

Windows

operating

systems

2.2. Vulnerabilities and patches

When software is executed in a way different from

what the original software designers intended, this

misbehavior is rooted in software bugs. Anderson [21]

https://www.researchgate.net/publication/3941712_Why_Information_Security_is_Hard-An_Economic_Perspective?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==

assumes the ratio between software bugs and software

lines of code (SLOC) to be about 1:35, i.e. Windows

2000 with its 35 Mio. SLOC would have one million

bugs included. When bugs can be directly used by

attackers to gain access to a system or network, they

are termed (information security) “vulnerabilities” by

MITRE [21]. Although there are other definitions of

“vulnerabilities” [23;24], the adoption of the MITRE

definition is useful (in a pragmatic, but not necessarily

normative sense) for four reasons:

(1) Most empirical studies implicitly use this

definition by analyzing “Common Vulnerability and

Exposures (CVE)” entries, which are based on the

understanding of MITRE. CVE names are not only

widely used by researchers, they are also used by

information security product/service vendors. Thereby,

the CVE definition has become a “de facto standard”.

(2) The process of accepting a potential software

bug as CVE vulnerability is well documented and the

assessment is conducted by security experts [22].

(3) The U.S. National Institute of Standards and

Technology (NIST) adopts the MITRE understanding

of vulnerabilities in their National Vulnerability

Database (NVD), which is probably the largest

database of security-critical software bugs and which

provides comprehensive CVE vulnerability data feeds

for automated processing.

(4) The definition is precise

(http://cve.mitre.org/about/terminology.html):

A vulnerability is a state in a computing system (or

set of systems) that either:

• allows an attacker to execute commands as

another user

• allows an attacker to access data that is contrary

to the specified access restrictions for that data

• allows an attacker to pose as another entity

• allows an attacker to conduct a denial of service

It should be noticed that this definition does not

exactly match the US-CERT vulnerability definition,

but is “closely related”: “While the mapping between

CVE names and US-CERT vulnerability IDs are

usually pretty close, in some cases multiple

vulnerabilities may map to one CVE name, or vice

versa. The CVE group tracks a large number of

security problems, not all of which meet our criteria

for being considered a vulnerability.”[24]

Vulnerabilities and their dynamic behavior can be

described with the “vulnerability life cycle”, which is

shown in Figure 1 as a UML statechart diagram. The

diagram provides a process-oriented perspective on a

single vulnerability and its patch (for the consideration

of exploits see the study of Frei [8]), integrates states

that have been introduced by Arbaugh et al. [25], and

depicts a cycle of vulnerability discovery and repair

that also creates new vulnerabilities. [24]. The lifecycle

starts with the injection of a vulnerability into software.

In principle, a vulnerability can find its way into

software through (a) the intentional behavior of

software developers, who strive for selling or

exploiting vulnerabilities, or for harming the employer,

or (b) unintentional behavior, which can be rooted in

careless programming or in using “insecure”

development tools. This behavior can be economically

rational as companies often do not have sufficient

incentives to avoid vulnerabilities [26]. After some

testing, the software is finally released and the search

for vulnerabilities begins for the public (and potentially

continues for the software vendor).

Figure 1. Vulnerability life cycle

The discovery of a vulnerability can be based on

coincidental detection or on the active search of

persons with intrinsic motivation (to make software

more secure) or with extrinsic motivation (to get

reputation, to gain financial advantage, or “to do their

job”). When a vulnerability is discovered, the question

occurs whether it should be published or not. If the

vulnerability is detected by a “black hat”, his or her

decision depends on whether s/he aims at making the

vulnerability available to as many other “black hats” as

possible and to gain reputation, or to a closed group of

potential attackers, who can exploit the vulnerability

exclusively. If the vulnerability is detected by a “white

hat”, including the software vendor, it is still not clear

whether the vulnerability should be published or not, as

vulnerability information is useful for both the good

guys, who can provide patches, and the bad guys, who

probably would not have gained knowledge of the

vulnerability otherwise. Some researchers have

addressed this question: Rescorla [13] argues against

disclosure as he finds the probability of vulnerability

rediscovery being vanishingly small. However,

investigating the operating system OpenBSD, Ozment

[16] finds vulnerabilities being correlated regarding

their rediscovery and argues in favor of disclosure.

https://www.researchgate.net/publication/228738947_B_Large-scale_vulnerability_analysis?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/247923775_The_Likelihood_of_Vulnerability_Rediscovery_and_the_Social_Utility_of_Vulnerability_Hunting?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3437666_Is_finding_security_holes_a_good_idea?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3941712_Why_Information_Security_is_Hard-An_Economic_Perspective?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==

Using game-theoretic models, Arora et al. [27] and

Nizovtsev and Thursby [28] address the question of

when software vulnerabilities should be disclosed and

conclude that neither instant disclosure nor non-

disclosure is optimal. Arora et al. [29] use empirical

analysis to support their hypothesis, pointing out that

the optimal policy depends upon how quickly vendors

provide patches and upon how likely attackers are to

find and exploit vulnerabilities. Choi et al. [30] discuss

different disclosure regimes and conclude that

mandatory disclosure improves welfare only when the

probability of attack is high and the expected damage

is small. An overview of the classification of

vulnerabilities is provided in Figure 2, which also

shows that in this paper only published vulnerabilities

are considered, as no reliable data is available for

unpublished vulnerabilities.

Figure 2. Classification of software bugs and

vulnerabilities, source: [14; p. 2]

Once a vulnerability is published, it seems obvious

that the vendor should provide a patch as soon as

possible. But it can be economically reasonable for the

vendor to not provide a patch if customers have little

option to change products or if all competitors behave

alike. Arora et al. [31] analyze the timing of patch

release and find that both the competition effect and

disclosure threat effect hasten patch release, with

competition having an even stronger effect. Cavusoglu

et al. [32] apply game theory to compare liability and

cost-sharing as mechanisms for incentivizing vendors

to patch their software and conclude that liability helps

where vendors release less often than optimal, while

cost-sharing helps where they release more often.

If the vulnerability is not published (and detected

by “white hats” other than the vendor), again, the

question arises of whether the vendor should provide a

patch or not. While the aforementioned economic

arguments still hold, the decision to not provide a patch

might be additionally rooted in the assumptions that (a)

a non-published vulnerability is hardly exposed to

attacks, (b) any vulnerability disclosure reduces the

vendor’s reputation, and (c) the patch reveals the

vulnerability to attackers who then try to compile

exploits and to use them to attack unpatched systems.

When a vulnerability patch is available, the search

for newly injected vulnerabilities starts since it is

known that patches can contain new vulnerabilities

[33]. As the injection refers to new vulnerability,

Figure 1 shows a dashed line.

The uncertainty of whether a vulnerability should

be published and patched also applies to the decision of

whether a software patch should be installed. The

customers – be they private users or institutions – still

have to determine the risk of installing the patch

(immediately) for two reasons: First, the patch might

contain even more critical vulnerabilities than the

patched ones. Second, the benefit from having one or

several vulnerabilities removed needs to be opposed to

the risk that the patch installation makes applications

dysfunctional, which can lead to considerable

economic harm (for example, when production systems

discontinue working or online shops are shut down.)

The previous discussion of the lifecycle stresses

that the empirical security of software goes beyond

technological phenomena and also depends on

economic conditions. In the particular context of open

source and closed source software, Anderson [34]

draws on software reliability models and statistical

thermodynamics to show that although, under ideal

conditions, open and closed systems are equally secure,

this symmetry can be broken due to economic

phenomena, such as transaction costs and the behavior

of vendors.

3. Research methodology

3.1. Research framework

The research framework used in this paper is

shown in Figure 3. In order to answer the research

questions whether (particular styles of) open source

development or closed source development lead to less

severe vulnerabilities and more effective patching

behavior of vendors, we use vulnerability data of the

NIST National Vulnerability Database (NVD) and

patch data included in several other data pools. More

specifically, the analysis of data addresses the

following research hypotheses:

H1a: Open source development and closed source

development do not differ in their impact on

the severity of published vulnerabilities.

H1b: Open source development and closed source

development do not differ in their impact on

the patching behavior of software vendors.

https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==

H2a: Bazaar style development and cathedral style

development do not differ in their impact on

the severity of published vulnerabilities.

H2b: Bazaar style development and cathedral style

development do not differ in their impact on

the patching behavior of software vendors.

Figure 3. Research framework

The following subsections describe the data

acquisition procedures and explain which open source

and closed source software were selected.

3.2. Investigated software packages

The selection of software packages was driven by

the goal to have different groups of widely deployed

(open source and closed source) software available,

which contemporaneously show diversity in

functionality across groups (comprehensiveness) and

homogeneity in functionality inside the groups

(comparability). Although it cannot be proved that the

results of this empirical study also apply to other, less

deployed packages, the results provide a

comprehensive overview of software that is widely

used in private and institutional environments and that

is, thus, in the focus of attackers and defenders.

Assuming that most software is usually attacked

through the (client-server-based) Internet, we adopt the

client-server perspective to frame the selection of

software packages. At the client side, the most widely

deployed operating systems (OS) are Microsoft OS,

MAC OSX and Linux derivations. Among the

Microsoft OP, Windows 2000, Windows XP and

Windows Vista are the leading ones in terms of market

share, but we exclude the latter due to its short history

(release date: January 30, 2007). Regarding Linux, we

(arbitrarily) selected Red Hat Linux and Debian Linux,

which are widely deployed Linux distributions. In

addition to operating systems, we analyze web

browsers, email clients and office software, which are

widely used in both private and commercial

environments. Regarding web browsers, Internet

Explorer and Firefox are the most widely used

programs, regarding email clients and office software,

we select Outlook Express and Thunderbird, which are

comparable in terms of functionality in contrast to

Outlook, which integrates much more functionality,

and MS Office and OpenOffice.

On the server site, we analyze web servers and

(relational) database management systems (DBMS),

which are widely used application types. Internet

Information Services and Apache are the most

frequently used web servers. Oracle and DB2 are two

of the mostly used closed source DBMS, while as open

source DBMS DB2 and PostgreSQL are frequently

used. The specific versions of the software packages

are given in Table 2.

3.3. Vulnerability data

The MITRE CVE group provides both a definition

of vulnerabilities (see discussion above), and a

dictionary of vulnerabilities [22]. This dictionary

contains for each vulnerability a standard identifier

number (e.g. CVE-1999-0067), a brief description, and

references to related vulnerability reports and

advisories. As the data sources of CVE are manifold

and include trustful organizations, such as US-CERT

and SecurityFocus, the CVE input can be assumed to

be comprehensive, although it cannot be guaranteed

that all disclosed vulnerabilities are considered. The

analysis of potential vulnerabilities by the MITRE

content team assures that each CVE candidate has been

inspected by security professionals. Overall, the CVE

dictionary is a valuable resource for vulnerability

analysis in terms of both quantity and quality. The

CVE group recommends to use the NIST National

Vulnerability Database (NVD) (http://nvd.nist.gov/),

which is the only data pool that provides full database

functionality for the complete MITRE CVE dictionary.

The NVD, formerly known as ICAT, contains

information on all CVE identifiers. The NVD is

updated immediately whenever a new vulnerability is

added to the CVE dictionary of vulnerabilities. New

vulnerabilities are then analyzed by NVD analysts on a

first-in, first-out basis and augmented with attributes

(see below) usually within two U.S. government

business days [35]. The NVD team then adds

additional information, some of which is as follows

[36]:

• Affected software and versions: The NVD applies

the structured naming scheme CPE (Common

Platform Enumeration) provided by MITRE. An

example is “cpe:/o:redhat:enterprise_linux:3”.

• (Base) Score: The NVD provides vulnerability

scores for almost all published vulnerabilities

using the “Common Vulnerability Scoring

System” (CVSS) 2.0 (http://www.first.org/

cvss/cvss-guide.html). The scores are between 0

and 10 (highest severity) and the particular value

depends on several characteristics of the

vulnerability, such as the level of authentication

needed to exploit the vulnerability and the impact

of a security breach on confidentiality and

integrity. CVSS scores for vulnerabilities

published prior to 11/9/2005 were approximated

by the NVD team from prior CVSS metric data.

The investigation of the NVD conversion script

reveals that for all CVSS 2 characteristics

corresponding CVSS 1 ones are available [35] and

a “natural” conversion was conducted, which

allows comparing scores converted into CVSS 2

with “new” CVSS 2 scores.

• Original release date (ORD): The ORD assigned

to a CVE identifier does not necessarily mirror the

actual date of disclosure due to two potential time

gaps: 1) Time between the actual disclosure of a

vulnerability (on the web or in mailing lists, for

example) and its consideration in the “Assigned”

phase of the MITRE CVE workflow. (2) Time

between the “Assigned” date and the NVD

publication date. This gap is usually not larger

than some days [35], but as information on time

gap (1) is available, the computation of patch

times and exploit times would contain errors of

unknown size.

The following analysis of NVD vulnerabilities is based

on NVD xml data feeds as available at 31 January

2009. All feeds were imported into MS Office Excel

2007 and processed using filters and MS Query. In

order to assure that vulnerabilities listed in the NVD

data feeds have not been accidentally misattributed

regarding the affected software version, we double-

check the affected software versions of each

vulnerability on the websites of vendors, MITRE, and

SecurityFocus. In the very few cases of inconsistencies

we exclude the particular vulnerability from any

further analysis. This procedure was extremely time-

consuming, but useful to assure the correctness of

NVD information on affected software versions.

3.4. Patch data

While the analysis of vulnerabilities and their

publication refers to the first three phases of the

software vulnerability lifecycle and thereby mirrors

software communities’ behavior in terms of creating,

detecting, and publishing vulnerabilities, the

investigation of the provision of patches aims at

identifying communities’ behavior regarding actively

addressing and finally removing vulnerability issues. In

order to detect differences in the patching behavior of

open source and closed source vendors, we analyze

how many of the vulnerabilities remained unpatched

and whether any correlation between the patch status

and the severity of vulnerabilities exists. Although

vendor sites provide patch dates, we do not analyze the

time gap between vulnerability disclosure and vendor’s

provision of patches, as the vulnerability publication

dates contained in the NVD do not necessarily give the

actual publication date (cmp. discussion above). In

contrast to vulnerability publication data, reliable data

on patches can be (manually) collected by directly

looking up vendors’ sites and vendor-neutral websites.

More specifically, we use the following data sources to

obtain reliable patch data: NVD, MITRE site, US-

CERT Vulnerability Notes Database, SecurityFocus,

Microsoft Security Bulletins, OpenOffice.org, The

Open Source Vulnerability Database, The X-Force

database (IBM), Mozilla Foundation Security

Advisories, Red Hat Network, Apache Security

Reports, Apple Mailing Lists, IBM FixPaks, VUPEN

Security, mySQL Forge, and Oracle Security Alerts

and Patch Updates. The newly compiled data pool

contains patch data on the aforementioned browsers,

email clients, web servers, office products, operating

systems and database management systems.

4. Empirical results

4.1. Severity of vulnerabilities

We analyze the severity of vulnerabilities for each

software package in terms of mean, median, standard

deviation, and the proportion of highly severe

vulnerabilities. For each application type, the median

of medians is also given (see Table 2). The analysis

provides the following results:

• The medians of medians reveal that the

vulnerabilities of office products are much more

severe (8.45) than those of web servers (5.0),

while the values of the other application types are

close to each other.

• When we determine the medians of medians of

open source software (5.7) and closed source

software (6.8) and also the corresponding medians

of the proportions of highly severe vulnerabilities

(30.28% and 45.95%, respectively), the first

impression is that open source software is more

secure in terms of the severity level. However,

applying statistical analysis (Mann-Whitney U-

test), no statistically significant differences can be

found: the two-tailed test provides a high number

for p (p=0.1139). Applying the same test to the

proportion figures, the test, again, does not

indicate that the samples are significantly different

at the 0.05 level (p=0.06). To sum up, we find no

statistically significant difference between the

severity of vulnerabilities in open source and

closed source software. Thus, we have no

statistically significant evidence that hypothesis 1a

is wrong.

• Comparing open source software developed in

bazaar style with that developed in cathedral style,

no significant difference in terms of median

(p=0.25) and also no significant difference in

terms of the proportion of highly severe

vulnerabilities occur (p=0.39). Consequently, we

get no statistically significant evidence that

hypothesis 2a is wrong.

Table 2. Severity of published vulnerabilities

Application

type

Product Devel. Type
1)

 Severity

(range=[0;10])

mean median std.

dev.

Proportion of

highly severe

vulnerabilities

([7;10])
2)

Median of

medians

Browser Internet

Explorer 7
Closed

6.65 6.80 2.07 45.95%

 6.6

Firefox 2 Open (BS) 6.38 6.40 2.11 36.53%

Email

client

MS Outlook

Express 6
Closed

6.18

5.10 1.76

39.13%

 5.95

Thunderbird 1 Open (CS) 6.53 6.80 2.23 47.27%

Web

server

IIS 5 Closed 6.00 5.00 1.55 36.14%
5.00

Apache2 Open (CS) 5.36 5.00 1.50 18.75%

Office MS Office

2003
Closed

8.11 9.30 1.91 67.72%

8.45

OpenOffice 2 Open (CS) 7.61 7.60 1.79 63.16%

Operating

system

Windows 2000 Closed 6.58 7.20 2.10 57.92%

6.8

Windows XP Closed 6.67 7.20 2.16 58.92%

MAC OSX Closed
4)

6.18 6.80 2.13 41.33%

Red Hat

Enterprise

Linux 4
3)

Open (CS) 4.72 4.90 2.20 23.11%

Debian 3.1
3)

 Open (BS) 4.75 4.90 2.21 23.19%

Database

Management

Systems

mySQL 5 Open (BS) 5.05 4.90 2.02 12.12%

5.7
PostgreSQL 8 Open (CS) 6.17 6.80 1.89 36.00%

Oracle 10g Closed 5.96 5.50 2.05 33.33%

DB2 v8 Closed 6.22 7.2 2.75 53.85%

BS: Bazaar style CS: Cathedral style
1) Regarding the identification of the particular open source development style (cathedral vs. bazaar) we checked the particular

community websites. In some cases we found elements of both styles. The binary classification in the table reflects the

author’s assessment according to whether they are more “cathedral style” or “bazaar style”.
2) compliant with CVSS severity ratings
3) The NVD lists linux kernel vulnerabilities separately from vulnerabilities of specific Linux distributions. Red Hat

Enterprise Linux 4 uses Linux kernel 2.6.9, Debian 3.1 uses Linux kernels 2.4.27 or 2.6.8. We consider only those kernel

vulnerabilities that were published after the release date of Red Hat Enterprise Linux 4 and Debian 3.1, respectively.
4) Some open source components are included.

4.2. Patching behavior

Table 3 shows aggregated patch data for each

software package. Vulnerabilities for which we could

not find any patch information by February 28, 2009

are classified as “still unpatched”. It is remarkable to

see that 17.6% (30.4%) of the published open (closed)

source software vulnerabilities (in terms of the median)

are still unpatched. However, applying statistical

analysis (Mann-Whitney U-test) on the proportions of

unpatched vulnerabilities, no statistically significant

differences between open and closed source software

can be found: the two-tailed test provides a high

number for p (p=0.48). Regarding open source

software developed in bazaar or in cathedral style (see

Table 2), again, no statistically significant difference

appears (p=0.79). Apparently, the proportion of still

unpatched vulnerabilities largely depends on the

specific vendor. We discuss this behavior in detail

below.

Interestingly, the case of Microsoft also shows that

even the same vendor can apply different patching

behavior dependent on the particular application type:

while only 4% of MS Office 2003 vulnerabilities

remain unpatched, one out of three vulnerabilities of

both operating systems remain unpatched, every

second vulnerability of IIS is still open, and even two

out of three vulnerabilities of the Internet clients

remain unpatched. The case of operating systems

shows that the proportion of unpatched vulnerabilities

of software cannot be explained by simply considering

the number of vulnerabilities, it rather depends on the

vendors’ patching priorities.

Table 3. Patched and unpatched vulnerabilities

Application

type
Product

Vulnerabilities (un)patched Median of severities

#vuln. #vuln.

unpatched

Prop. of un-

patched vuln.
unpatched patched overall

Browser

Internet

Explorer 7

74 49 66.22% 5.0 9.3 6.8

Firefox 2 167 34 20.36% 5.0 6.8 6.4

Email client

MS Outlook

Express 6

23 15 65.22% 5.0 7.3 5.1

Thunderbird

1

110 6 5.45% 3.45 6.95 6.8

Web server
IIS 5 83 40 48.19% 5.0 7.2 5.0

Apache2 80 21 26.25% 4.7 5.0 5.0

Office

MS Office

2003

99 4 4.04% 5.05 9.3 9.3

OpenOffice 2 19 4 21.05% 5.25 9.3 7.6

Operating

system

Windows

2000

385 117 30.39%

5.1 7.2 7.2

Windows XP 297 91 30.64% 5.0 7.5 7.2

MAC OSX 300 20 6.67% 5.0 6.8 6.8

Red Hat

Enterprise

Linux 4

264 39 14.77% 4.9 4.9 4.9

Debian 3.1 207 30 14.49% 4.9 4.9 4.9

Database

Management

System

mySQL 5 33 8 24.24% 4.6 4.9 4.9

PostgreSQL 8 25 3 12.00% 9.0 6.3 6.8

Oracle 10g 63 8 12.70% 7.35 5.5 5.5

DB2 v8 13 1 7.69% 7.8 7.2 7.2

It is interesting to compare the severity median of

unpatched vulnerabilities with the median of patched

vulnerabilities, in order to detect vendors’ patching

priorities and differences between open source and

closed source software. The data in Table 3 reveal that,

for all six Microsoft products, there is a strong bias

towards patching the most severe vulnerabilities. This

result indicates that Microsoft decides to leave less

severe vulnerabilities unpatched, probably because the

economic efforts would not be compensated by the

(minor) gain in software security. However, on the

other hand the result also shows that Microsoft is

interested in patching severe vulnerabilities, which

reveals that software security is regarded a serious

market issue. Apple (MAC OSX) shows a similar

behavior in their operating system in terms of the

severities of patched and unpatched vulnerabilities,

but, in contrast to Microsoft, Apple seems to be

interested in patching most of the vulnerabilities. We

find this strong interest in patching vulnerabilities also

in the cases of Oracle and IBM (DB2), but the severity

medians of unpatched vulnerabilities are higher than

those of the patched ones. To sum up, three out of four

closed source software vendors leave few

vulnerabilities unpatched and the other vendor focuses

on patching more severe vulnerabilities.

Regarding the medians of patched and unpatched

vulnerabilities of open source vendors and their

particular development style (bazaar vs. cathedral), we

do not find any pattern. In addition, the patching

behavior of open source vendors shows that the

proportion of unpatched vulnerabilities varies between

12% and 26.25% and can differ considerably. On the

other hand, none of the eight open source software

packages shows an outlier, in contrast to closed source

software. Consequently, we hypothesize that open

source software development at least prevents

“extremely bad” patching behavior.

As a result of the analysis of the patching behavior

of software vendors, it turns out that the behavior is not

determined by the particular software development

style, but by the policy of the particular development

community, i.e. there is no statistically significant

evidence against hypotheses 1b and 2b.

5. Summary and conclusions

This work presented the first comprehensive

empirical study on the security of open source and

closed source security. It compared 17 well known and

widely deployed software packages regarding the

severity of published vulnerabilities and vendors’

patching behavior. The empirical results showed that

open source and closed source software do not

significantly differ in terms of the severity of

vulnerabilities and vendors’ patching behavior.

Although open source software development seems to

prevent “extremely bad” patching behavior, overall

there is no empirical evidence that the particular type

of software development is the primary driver of

security. Rather, the policy of the particular

development community or vendor determines the

patching behavior. To sum up, empirics suggest that

we have essentially asked the wrong question by

discussing whether open source or closed source

software leads to more security.

Consequently, in order to make software less

vulnerable, it is most important to provide strong

economic incentives for software producers to provide

patches (at least for disclosed vulnerabilities) or, even

better, to avoid vulnerabilities at the outset.

Apparently, the question of how secure software

packages are deserves increasing attention of

economists.

6. References

[1] M. Schwarz and Y. Takhteyev, “Half a Century of Public

Software Institutions: Open Source as a Solution to Hold

Up Problem”, http://www.takhteyev.org/papers/Schwarz-

Takhteyev-2008.pdf, 2008.

[2] C. Payne, “On the security of open source software”,

Information Systems Journal (12:1), 2002, pp. 61-78.

[3] Raymond, E.S. The Cathedral and the Bazaar: Musings

on Linux and Open Source by an Accidental Revolutionary,

O’Reilly, Beijing, China, 2001.

[4] E. Levy, “Wide open source”,

http://www.securityfocus.com/news/19, 2000.

[5] J. Viega, “Open Source Security: Still a Myth”,

http://www.onlamp.com/pub/a/security/2004/09/16/open_sou

rce_security_myths.html, 2004.

[6] O.H. Alhazmi and Y.K. Malaiya, “Measuring and

enhancing prediction capabilities of vulnerability discovery

models for Apache and IIS HTTP servers”, in: Proceedings

of the 17th International Symposium on Software Reliability

Engineering (ISSRE’06), Washington, DC, USA, 2006, pp.

343–352.

[7] O. Alhazmi, Y. Malaiya, and I. Ray, “Measuring,

analyzing and predicting security vulnerabilities in software

systems”, Computers & Security (26:3), 2007, pp. 219-228.

[8] S. Frei, M. May, U. Fiedler B. Plattner, “Large-Scale

Vulnerability Analysis, in: Proceedings of the ACM

SIGCOMM 2006 Workshop, November 11, 2006, Pisa, Italy.

[9] R. Gopalakrishna and E.H. Spafford, “A trend analysis of

vulnerabilities”, Technical Report 2005-05, CERIAS, Purdue

University, May 2005.

[10] S. Neuhaus, T. Zimmermann, C. Holler and A. Zeller,

“Predicting Vulnerable Software Components“, in:

Proceedings of the 14th ACM Conference on Computer and

Communications Security (CCS 2007), Alexandria, VA,

USA, October 2007, pp. 529-540.

[11] S.-W. Woo, O.H. Alhazmi, and Y.K. Malaiya, “An

analysis of the vulnerability discovery process in web

browsers”, in: Proceedings of the 10th IASTED International

Conference on Software Engineering and Applications,

Dallas, TX, USA, November 13-15, 2006.

[12] S.-W.Woo, O.H. Alhazmi Y.K. Malaiya, “Assessing

vulnerabilities in Apache and IIS HTTP servers, in:

Proceedings of the 2nd International Symposium on

https://www.researchgate.net/publication/221542037_Measuring_and_Enhancing_Prediction_Capabilities_of_Vulnerability_Discovery_Models_for_Apache_and_IIS_HTTP_Servers?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221542037_Measuring_and_Enhancing_Prediction_Capabilities_of_Vulnerability_Discovery_Models_for_Apache_and_IIS_HTTP_Servers?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221542037_Measuring_and_Enhancing_Prediction_Capabilities_of_Vulnerability_Discovery_Models_for_Apache_and_IIS_HTTP_Servers?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221542037_Measuring_and_Enhancing_Prediction_Capabilities_of_Vulnerability_Discovery_Models_for_Apache_and_IIS_HTTP_Servers?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221542037_Measuring_and_Enhancing_Prediction_Capabilities_of_Vulnerability_Discovery_Models_for_Apache_and_IIS_HTTP_Servers?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221542037_Measuring_and_Enhancing_Prediction_Capabilities_of_Vulnerability_Discovery_Models_for_Apache_and_IIS_HTTP_Servers?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/228738947_B_Large-scale_vulnerability_analysis?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/228738947_B_Large-scale_vulnerability_analysis?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/228738947_B_Large-scale_vulnerability_analysis?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221609812_Predicting_Vulnerable_Software_Components?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221609812_Predicting_Vulnerable_Software_Components?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221609812_Predicting_Vulnerable_Software_Components?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221609812_Predicting_Vulnerable_Software_Components?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221609812_Predicting_Vulnerable_Software_Components?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220356474_On_the_Security_of_Open_Source_Software?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220356474_On_the_Security_of_Open_Source_Software?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/252386569_A_Trend_Analysis_of_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/252386569_A_Trend_Analysis_of_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/252386569_A_Trend_Analysis_of_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220615003_Measuring_analyzing_and_predicting_security_vulnerabilities_in_software_systems?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220615003_Measuring_analyzing_and_predicting_security_vulnerabilities_in_software_systems?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220615003_Measuring_analyzing_and_predicting_security_vulnerabilities_in_software_systems?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/227601039_Half_a_Century_of_Public_Software_Institutions_Open_Source_as_a_Solution_to_Hold-Up_Problem?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/227601039_Half_a_Century_of_Public_Software_Institutions_Open_Source_as_a_Solution_to_Hold-Up_Problem?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/227601039_Half_a_Century_of_Public_Software_Institutions_Open_Source_as_a_Solution_to_Hold-Up_Problem?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/227601039_Half_a_Century_of_Public_Software_Institutions_Open_Source_as_a_Solution_to_Hold-Up_Problem?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220691704_The_cathedral_and_the_bazaar_musings_on_Linux_and_open_source_by_an_accidental_revolutionary?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==

Dependable, Autonomic and Secure Computing,

Indianapolis, IN, USA, September 29-October 01, 2006, pp.

103-110.

[13] E. Rescorla, “Is finding security holes a good idea?”, in:

Proceedings of the Third Annual Workshop on Economics

and Information Security, Minneapolis, Minnesota, May 13-

14, 2004.

[14] G. Schryen, “Security of open source and closed source

software: An empirical comparison of published

vulnerabilities”, in: Proceedings of Americas Conference on

Information Systems, San Francisco, California, August 6 -

9, 2009.

[15]

[16] A. Ozment, “The Likelihood of Vulnerability

Rediscovery and the Social Utility of Vulnerability Hunting”,

in: Proceedings of the Fourth Workshop on the Economics of

Information Security, Cambridge, Massachusetts, June 2-3,

2005, pp. 1-21.

[17] Open Source Initiative (OSI), “The Open Source

Definition”, http://www.opensource.org/docs/osd, 2006.

[18] J. M. Gonzalez-Barahona, “Free Software/Open Source:

Information Society Opportunities for Europe?”, Working

group on Libre Software,

http://eu.conecta.it/paper/cathedral_bazaar.html, 2000.

[19] Free Software Foundation (FSF), “The Free Software

Definition”, http://www.fsf.org/licensing/essays/free-

sw.html, 2007.

[20] G. Schryen and R. Kadura, “Open Source vs. Closed

Source Software: Towards Measuring Security”, in:

Proceedings of the 2009 ACM Symposium on Applied

Computing, Honolulu, Hawaii, March 8-12, 2009, pp. 2016-

2023.

[21] R. Anderson, “Why Information Security is Hard – An

Economic Perspective”, in: Proceedings of the Seventeenth

Computer Security Applications Conference, New Orleans,

Louisiana, December 10-14, 2001, pp. 358-365.

[22] MITRE, “Common Vulnerabilities and Exposures”,

http://cve.mitre.org, 2009

[23] A. Ozment, “Improving Vulnerability Discovery

Models: Problems with Definitions and Assumptions”, in:

Proceedings of the Third Workshop on Quality of Protection

(QoP’07), Alexandria, VA, USA. October 29, 2007.

[24] US-CERT, “Vulnerability Notes Database Field

Descriptions”, http://www.kb.cert.org/vuls/html/fieldhelp,

2009.

[25] W.A. Arbaugh, W.L. Fithen and J. McHugh, “Windows

of vulnerability: A case study analysis”, IEEE Computer

(33:12), 2000, pp. 52–59.

[26] Anderson, R. and Moore, T., “Information Security

Economics – and Beyond”, Information Security Summit

2008,

http://www.cl.cam.ac.uk/~rja14/Papers/econ_czech.pdf.

[27] A. Arora, R. Krishnan, A. Nandkumar, R. Telang, and

Y. Yang, “Impact of Vulnerability Disclosure and Patch

Availability – An Empirical Analysis”, in: Proceedings of the

Third Workshop on the Economics of Information Security,

Minneapolis, Minnesota, May 13-14, 2004, pp. 1-20.

[28] D. Nizovtsev and M. Thursby, “To disclose or not? An

analysis of software user behavior”, Information Economics

and Policy (19:1), 2007, pp. 43-64.

[29] A. Arora, A. Telang, and H. Xu, “Optimal Policy for

Software Vulnerability Disclosure”, in: Proceedings of the

Third Annual Workshop on Economics and Information

Security, Minneapolis, Minnesota, May 13-14, 2004, pp. 52-

59.

[30] J.P. Choi, C. Fershtman, and N. Gandal, “Network

Security: Vulnerabilities and Disclosure Policy”, Discussion

paper, http://www.msu.edu/~choijay/Internet_Security.pdf,

2007.

[31] A. Arora, C.M. Forman, A. Nandkumar, and R. Telang,

“Competitive and strategic effects in the timing of patch

release”, in Proceedings of the Fifth Workshop on the

Economics of Information Security, Cambridge, UK, June

26-28, 2006.

[32] H. Cavusoglu, H. Cavusoglu, and J. Zhang, “Economics

of Security Patch Management”, in: Proceedings of the Fifth

Workshop on the Economics of Information Security,

Cambridge, UK, June 26-28, 2006.

[33] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright,

and A. Shostack, “Timing the Application of Security

Patches for Optimal Uptime”, in: Proceedings of Sixteenth

Systems Administration Conference, Philadelphia,

Pennsylvania, November 3–8, 2002, pp. 233-242.

[34] R. Anderson, “Open and Closed Systems are Equivalent

(that is, in an ideal world)”, in: Perspectives on Free and

Open Source Software, Feller, J., B. Fitzgerald, S.A.

Hissam, and K.R. Lakhani (Eds.), MIT Press, Cambridge,

2005, pp. 127–142.

[35] NIST, Personal communication with C. Johnson,

National Vulnerability Database - Program Manager,

Computer Security Division Personal communication, May

2009.

[36] NIST, National Vulnerability Database,

http://nvd.nist.gov, 2009.

https://www.researchgate.net/publication/221000780_Open_source_vs_closed_source_software_Towards_measuring_security?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221000780_Open_source_vs_closed_source_software_Towards_measuring_security?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221000780_Open_source_vs_closed_source_software_Towards_measuring_security?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221000780_Open_source_vs_closed_source_software_Towards_measuring_security?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/221000780_Open_source_vs_closed_source_software_Towards_measuring_security?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/247923775_The_Likelihood_of_Vulnerability_Rediscovery_and_the_Social_Utility_of_Vulnerability_Hunting?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/247923775_The_Likelihood_of_Vulnerability_Rediscovery_and_the_Social_Utility_of_Vulnerability_Hunting?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/247923775_The_Likelihood_of_Vulnerability_Rediscovery_and_the_Social_Utility_of_Vulnerability_Hunting?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/247923775_The_Likelihood_of_Vulnerability_Rediscovery_and_the_Social_Utility_of_Vulnerability_Hunting?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/247923775_The_Likelihood_of_Vulnerability_Rediscovery_and_the_Social_Utility_of_Vulnerability_Hunting?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3437666_Is_finding_security_holes_a_good_idea?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3437666_Is_finding_security_holes_a_good_idea?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3437666_Is_finding_security_holes_a_good_idea?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3437666_Is_finding_security_holes_a_good_idea?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/222412190_To_Disclose_or_Not_An_Analysis_of_Software_User_Behaviour?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/222412190_To_Disclose_or_Not_An_Analysis_of_Software_User_Behaviour?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/222412190_To_Disclose_or_Not_An_Analysis_of_Software_User_Behaviour?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3941712_Why_Information_Security_is_Hard-An_Economic_Perspective?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3941712_Why_Information_Security_is_Hard-An_Economic_Perspective?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3941712_Why_Information_Security_is_Hard-An_Economic_Perspective?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/3941712_Why_Information_Security_is_Hard-An_Economic_Perspective?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220891308_Security_of_Open_Source_and_Closed_Source_Software_An_Empirical_Comparison_of_Published_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220891308_Security_of_Open_Source_and_Closed_Source_Software_An_Empirical_Comparison_of_Published_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220891308_Security_of_Open_Source_and_Closed_Source_Software_An_Empirical_Comparison_of_Published_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220891308_Security_of_Open_Source_and_Closed_Source_Software_An_Empirical_Comparison_of_Published_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220891308_Security_of_Open_Source_and_Closed_Source_Software_An_Empirical_Comparison_of_Published_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220891308_Security_of_Open_Source_and_Closed_Source_Software_An_Empirical_Comparison_of_Published_Vulnerabilities?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/220900613_Timing_the_Application_of_Security_Patches_for_Optimal_Uptime?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/237334212_Improving_Vulnerability_Discovery_Models_Problems_with_Definitions_and_Assumptions?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/237334212_Improving_Vulnerability_Discovery_Models_Problems_with_Definitions_and_Assumptions?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/237334212_Improving_Vulnerability_Discovery_Models_Problems_with_Definitions_and_Assumptions?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==
https://www.researchgate.net/publication/237334212_Improving_Vulnerability_Discovery_Models_Problems_with_Definitions_and_Assumptions?el=1_x_8&enrichId=rgreq-ccfb12a1f0a208b29f7eb311d26acef5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDEyMzIzMTtBUzoxMDM4NTkxMzc1NDgzMDJAMTQwMTc3MzM1NjcwNQ==

